Tetrahedron 66 (2010) 1563-1569

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Rhodium-catalyzed convenient synthesis of functionalized tetrahydronaphthalenes

Ken Tanaka*, Yayoi Sawada, Yusuke Aida, Maliny Thammathevo, Rie Tanaka, Hiromi Sagae, Yousuke Otake

Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan

ARTICLE INFO

Article history: Received 22 October 2009 Received in revised form 18 December 2009 Accepted 18 December 2009 Available online 28 December 2009

ABSTRACT

Convenient as well as convergent synthesis of functionalized tetrahydronaphthalenes has been accomplished under mild reaction conditions by the cationic rhodium(I)/H₈-BINAP complex-catalyzed [2+2+2] cycloaddition of 1,7-octadiyne derivatives with functionalized monoynes. The effect of the diyne tether lengths was investigated, which revealed that 1,6-heptadiyne and 1,7-octadiyne exhibit higher reactivity than 1,8-nonadiyne. Mechanistic studies indicated that the present rhodium-catalyzed [2+2+2] cycloaddition proceeds through the rhodacyclopentadiene intermediate generated by oxidative coupling of a diyne with rhodium. On the other hand, in the reactions of diynes and dimethyl acetylenedicarboxylate, the rhodacyclopentadiene intermediate generated by oxidative coupling of a diyne and a monoyne with rhodium would also be involved.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Tetrahydronaphthalene derivatives are found in several pharmaceutical ingredients,¹ therefore their convenient as well as convergent synthesis is highly desirable.^{2,3} Representatively, tetrahydronaphthalenes can be synthesized through the hydrogenation of the corresponding naphthalenes² or the intramolecular alkylation of the corresponding benzenes³ (Scheme 1). However, these methods require prior preparation of substituted naphthalene or benzene precursors. On the other hand, the [2+2+2] cycloaddition between 1,7-octadiyne derivatives, that can be obtained from commercial sources or prepared in one-step from commercially available reagents, with monoynes would be attractive, because various substituents can be introduced to the benzene ring in one-step by changing the substituents of two alkyne components (Scheme 1).^{4,5}

Despite the potential utility of the [2+2+2] cycloaddition between 1,7-octadiyne derivatives with monoynes for the synthesis of tetrahydronaphthalene derivatives, successful examples have been limited in number.^{6–13} In general, the metal-mediated oxidative cyclization efficiency of 1,7-diynes is lower than that of 1,6diynes.¹⁴ Especially, the cyclization of 1,7-octadiyne derivatives is rather difficult due to the lack of the Thorpe–Ingold effect induced by the tertiary center¹⁵ and the heteroatom coordination to the

* Corresponding author. Tel./fax: +81 42 388 7037. E-mail address: tanaka-k@cc.tuat.ac.ip (K. Tanaka).

Scheme 1. Synthetic routes for the preparation of tetrahydronaphthalene derivatives.

metals.^{14a} Therefore, a majority of previously reported examples require the prior formation of metallacyclopentadienes from 1,7-octadiyne derivatives using a stoichiometric amount of metal complexes, such as Ta,⁶ Mo,⁷ Mg/Mn,⁸ Co,⁹ and Ni¹⁰ complexes. In the case of using a catalytic amount of a metal complex, rapid formation of the metallacyclopentadiene from the 1,7-octadiyne derivative is necessary. Although several nickel-catalyzed reactions have been reported, diyne substrates are strictly limited to electron-deficient 1,7-octadiyne derivatives bearing ester or amide groups at the terminal positions.^{11,12} Furthermore, elevated temperature^{11a} or under microwave^{11b} heating are necessary.

In 2003, our research group discovered that cationic rhodium(I)/ biaryl bisphosphine complexes are highly effective catalysts for

^{0040-4020/\$ –} see front matter \odot 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.12.042

the [2+2+2] cycloaddition of alkynes, leading to substituted benzenes.¹⁶⁻¹⁸ This new catalyst system could be applicable to the [2+2+2] cycloaddition of not only 1,6-diynes¹⁷ but also 1,9-decadiyne or longer tethered-terminal 1,*n*-diynes (n=10-15) with monoalkynes, leading to bicyclic benzene derivatives.¹⁶ These results prompted our investigation into the synthesis of functionalized tetrahydronaphthalenes by the [2+2+2] cycloadditions of 1.7-octadivne derivatives with monovnes. Recently, the successful [2+2+2] cvcloadditions of 1,7-octadiyne with alkynylphosphine sulfides¹⁹ and oxides²⁰ using a cationic rhodium(I)/BINAP complex as a catalyst have been reported by Oshima, Yorimitsu, and co-workers,¹⁹ and Doherty and co-workers,²⁰ respectively, for the synthesis of phosphine ligands. However, detailed studies concerning further catalyst tuning and the substrate scope have not been reported. In this paper, we describe the cationic rhodium(I)/H₈-BINAP complex-catalyzed [2+2+2] cycloaddition of 1,7-octadiyne derivatives with monoynes for the synthesis of functionalized tetrahydronaphthalenes. Mechanistic insight of this reaction is also discussed.

2. Results and discussion

2.1. Screening of rhodium(I) catalysts for [2+2+2] cycloaddition of 1,7-octadiyne with ethyl 2-butynoate

We first examined the reaction of commercially available 1,7octadiyne (**1a**) with ethyl 2-butynoate (**2a**) at room temperature in the presence of a cationic rhodium(I) complex (5 mol%) with various bisphosphine ligands (Fig. 1) (Table 1, entries 1–7). In our previous reports of cationic rhodium(I) complex-catalyzed [2+2+2] cycloadditions of alkynes, cationic rhodium(I) complexes of biaryl bisphosphine ligands showed significantly higher catalytic activity than those of conventional mono- and bisphosphine ligands (Ph₃P, *n*-Bu₃P, dppe, dppb, and dppf), although precise mechanism is not clear.^{16,17} Especially, a cationic rhodium(I)/H₈-BINAP complex showed the highest catalytic activity.¹⁶ Consistent with our previous reports, biaryl bisphosphines were found to be suitable ligands (entries 4-7) and the use of H₈-BINAP furnished the desired tetrahydronaphthalene **3aa** in the highest yield (entry 7). Importantly, a cationic character of the catalyst is essential to promote the desired cycloaddition (entry 8). Not only an isolated cationic rhodium(I) complex, [Rh(cod)₂]BF₄, but also a cationic rhodium(I) complex generated in situ by mixing [Rh(cod)Cl]₂ and AgBF₄ could be employed (entry 9).

Figure 1. Structures of bisphosphine ligands.

2.2. Rhodium-catalyzed [2+2+2] cycloadditions of 1,7octadiyne derivatives with monoynes

Thus, the scope of monoynes in the [2+2+2] cycloaddition with 1,7-octadiyne (**1a**) was investigated at room temperature by using 5 mol % of the cationic rhodium(I)/H₈-BINAP complex as shown in

Table 1

Screening of rhodium catalysts for [2+2+2] cycloaddition of 1,7-octadiyne (1a) with ethyl 2-butynoate $(2a)^{\rm a}$

Entry	Catalyst	Yield ^b (%)
1	[Rh(nbd) ₂]BF ₄ /dppe	5
2	[Rh(cod) ₂]BF ₄ /dppb	9
3	[Rh(cod) ₂]BF ₄ /dppf	6
4	[Rh(cod) ₂]BF ₄ /BIPHEP	42
5	[Rh(cod) ₂]BF ₄ /BINAP	45
6	[Rh(cod) ₂]BF ₄ /Segphos	57
7	[Rh(cod) ₂]BF ₄ /H ₈ -BINAP	69
8	[Rh(cod)Cl] ₂ /2BINAP	0
9	[Rh(cod)Cl] ₂ /2AgBF ₄ /2H ₈ -BINAP	70

 $^a\,$ A (CH_2Cl)_2 solution of 1a and 2a was added dropwise over 10 min to a (CH_2Cl)_2 solution of a rhodium catalyst.

^b Isolated yield.

Table 2. Not only ethyl 2-butynoate (**2a**) but also ethyl phenylpropiolate (**2b**) reacted with **1a** to give the corresponding tetrahydronaphthalenes in high yields (entries 1 and 2), while the cycloadditions of *tert*-butyl propiolate (**2c**) and dimethyl acetylenedicarboxylate (**2d**) with **1a** proceeded in moderate yields due to the formation of homo-[2+2+2] cycloaddition products from **2c** and **2d** (entries 3 and 4).²¹ Not only electron-deficient monoynes **2a–d** but also electron-rich monoynes (propargylic alcohols) **2e–h** could also participate in this reaction to give the corresponding tetrahydronaphthalenes in high yields (entries 5–8).²²

Table 2

Rhodium-catalyzed [2+2+2] cycloadditions of 1,7-octadiyne (1a) with monoynes $\pmb{2a}{\textbf{-}}\pmb{h}^a$

Entry	2	R ¹	R ²	2 (equiv)	3	Yield ^b (%)
1	2a	Me	CO ₂ Et	1.1	3aa	77
2 ^c	2b	Ph	CO ₂ Et	1.1	3ab	92
3 ^d	2c	Н	CO ₂ t-Bu	2.0	3ac	52
4 ^{d,e}	2d	CO ₂ Me	CO ₂ Me	2.0	3ad	53
5	2e	Me	CH ₂ OH	1.1	3ae	80
6	2f	Ph	CH ₂ OH	1.1	3af	90
7 ^d	2g	Н	CH ₂ OH	2.0	3ag	94
8 ^f	2h	CH ₂ OH	CH ₂ OH	1.1	3ah	94

 $^a\,$ A (CH_2Cl)_2 solution of 1a was added dropwise over 10 min to a (CH_2Cl)_2 solution of 2 and Rh catalyst.

^b Isolated yield.

^c Concentration of **1a**: 0.05 M.

 $^d\,$ A (CH_2Cl)_2 solution of 1a and 2 was added dropwise over 10 min to a (CH_2Cl)_2 solution of Rh catalyst.

^e Ligand: BINAP.

^f Solvent: THF. For 1 h.

The scope of monoynes in the reactions with commercially available 2,8-decadiyne (**1b**) was also investigated as shown in Table 3. The cycloadditions of electron-deficient internal monoynes **2a**, **2b**, and **2d** with **1b** proceeded in moderate to high yields (entries 1, 2, and 4), while that of electron-deficient terminal monoyne **2c** with **1b** did not proceed due to the rapid homo-[2+2+2] cycloaddition of **2c** (entry 3). Interestingly, although electron-rich monoynes **2e–g** could react with **1b** in fare to good yields (entries 5–7), 2-butyne-1,4-diol (**2h**) failed to react with **1b** and no conversions of both **1b** and **2h** were observed (entry 8).

Table 3

Rhodium-catalyzed [2+2+2] cycloadditions of 2,8-decadiyne (1b) with monoynes ${\bf 2a}{\textbf -}{\textbf h}^a$

1	Zd	wie	CO2EL	2.0	SDd	69
2	2b	Ph	CO ₂ Et	2.0	3bb	84
3 ^c	2c	Н	CO ₂ t-Bu	2.0	3bc	0
4 ^{c,d,e}	2d	CO ₂ Me	CO ₂ Me	2.0	3bd	46
5 ^e	2e	Me	CH ₂ OH	2.0	3be	43
6 ^f	2f	Ph	CH ₂ OH	2.0	3bf	76
7 ^{c,f}	2g	Н	CH ₂ OH	5.0	3bg	30
8 ^g	2h	CH ₂ OH	CH ₂ OH	2.0	3bh	0

 $^a\,$ A (CH_2Cl)_2 solution of 1b was added dropwise over 10 min to a (CH_2Cl)_2 solution of 2 and Rh catalyst.

^b Isolated yield.

 c A (CH_2Cl)_2 solution of 1b and 2 was added dropwise over 10 min to a (CH_2Cl)_2 solution of Rh catalyst.

^d Ligand: BINAP.

e At 80 °C.

- $^{\rm f}$ At 50 $^\circ\text{C}.$
- ^g Solvent: THF.

Not only 2,8-decadiyne (**1b**) but also commercially available 3,9-dodecadiyne (**1c**) could be equally employed for this reaction (Scheme 2).

Scheme 2. Rhodium-catalyzed [2+2+2] cycloaddition of internal 3,9-dodecadiyne (**1c**) with monoyne **2a**.

Other than electron-rich 1,7-octadiyne derivatives, methoxy carbonyl-substituted electron-deficient 1,7-octadiyne **1d**, that can be readily prepared in one-step from commercially available **1a**,²³ was employed for this reaction as shown in Table 4. Electron-deficient internal monoynes **2a**, **2b**, and **2d** were able to react with **1d** (entries 1, 2, and 4), while electron-deficient terminal monoyne **2c** failed to react with **1d** due to the rapid homo-[2+2+2] cycloadditions of both **1d** and **2c** (entry 3). In the reactions of **1d** and propargylic alcohols **2e–g**, sequential [2+2+2] cycloaddition-lactonization²⁴ proceeded to yield the corresponding lactones in excellent yields (entries 5–7). However, 2-butyne-1,4-diol (**2h**) failed to react with **1d** and no conversions of both **1d** and **2h** were observed (entry 8).

Not only propargylic alcohol (**2g**) but also protected propargyl amine **2i** was able to react with 1,7-diynes **1a**, **1b**, and **1d** to yield the corresponding protected 2-tetrahydronaphthalenemethylamine derivatives (Scheme 3), while non-protected propargyl amine could not participate in this reaction.²⁵

2.3. Comparison of reactivity of 1,6-heptadiyne, 1,7octadiyne, and 1,8-nonadiyne

The effect of the diyne tether lengths on the reactivity toward the cationic rhodium(I)/H₈-BINAP complex-catalyzed [2+2+2] cycloaddition was systematically investigated as shown in Table 5. Electron-rich (**2e**) and moderately electron-deficient monoynes (**2a**) reacted with 1,6-heptadiyne (**1e**) and 1,7-octadiyne (**1a**) to give the corresponding 5–6 and 6–6 fused bicyclic benzenes in high yields (entries 1, 2, 4, and 5). Monoynes **2e** and **2a** were also able to

Table 4

Rhodium-catalyzed [2+2+2] cycloadditions of electron-deficient 1,7-octadiyne derivative **1d** with monoynes **2a** $-h^a$

Entry	2	R	R ²	2 (equiv)	3	Yield ^b (%)	
1 ^c	2a	Me	CO ₂ Et	2.0	3da	86	
2 ^c	2b	Ph	CO ₂ Et	2.0	3db	96	
3 ^d	2c	Н	CO ₂ t-Bu	2.0	3dc	0	
4 ^{d,e}	2d	CO ₂ Me	CO ₂ Me	2.0	3dd	21	
5	2e	Me	CH ₂ OH	2.0	4de	98	
6 ^f	2f	Ph	CH ₂ OH	2.0	4df	96	
7 ^d	2g	Н	CH ₂ OH	5.0	4dg	97	
8 ^g	2h	CH ₂ OH	CH ₂ OH	2.0	5	0	

 $^a\,$ A (CH_2Cl)_2 solution of 1d was added dropwise over 10 min to a (CH_2Cl)_2 solution of 2 and Rh catalyst.

^b Isolated yield.

^c Concentration of **1d**: 0.05 M.

 d A (CH_2Cl)_2 solution of 1d and 2 was added dropwise over 10 min to a (CH_2Cl)_2 solution of Rh catalyst.

^e Ligand: BINAP.

^f At 40 °C.

g Solvent: THF.

Scheme 3. Rhodium-catalyzed [2+2+2] cycloadditions of 1,7-octadiyne derivatives 1 with protected propargyl amine 2i.

react with 1,8-nonadiyne (**1f**) to give the corresponding 6–7 fused bicyclic benzenes in moderate yields (entries 3 and 6). As the transition-metal-mediated [2+2+2] cycloaddition of 1,8-non-adiyne derivatives with monoynes was scarcely reported, these successful reactions are worthy of note.^{13,26,27} However, highly electron-deficient monoyne **2d** reacted with 1,7-diyne **1a** in very low yield (entry 7). The use of BINAP as a ligand instead of H₈-BINAP was found to be effective, and the corresponding 5–6 and 6–6 fused phthalates were obtained in fair yields (entries 8 and 9), although less reactive 1,8-diyne **1f** failed to react with **2d** (entry 10).

2.4. Mechanistic consideration

A plausible mechanism for the rhodium-catalyzed [2+2+2] cycloaddition of terminal diynes **1** with monoynes **2** is shown in Scheme **4**. Bicyclic benzene **3** can be obtained through rhodacy-clopentadiene intermediate **A** or **B**, generated by oxidative coupling of diyne **1** with rhodium or diyne **1** and monoyne **2** with rhodium, respectively. In the reactions of terminal diynes **1e**, **1a**, and **1f** with electron-rich (**2e**) and moderately electron-deficient monoynes (**2a**), homo-[2+2+2] cycloaddition products of diynes were generated as major by-products. Therefore rhodacyclopentadiene **A** would be a major intermediate. Similarly, homo-[2+2+2]

cycloaddition products of diynes were generated as major byproducts in the reactions of internal diynes **1b–d** with monoynes **2a–g**, and so the rhodacyclopentadiene generated by oxidative coupling of diynes **1b–d** with rhodium would be a major intermediate.

Scheme 4. Plausible mechanism for rhodium-catalyzed [2+2+2] cycloaddition of diynes **1** with monoynes **2**.

On the other hand, we previously reported that dialkyl acetylenedicarboxylate **5** is an excellent partner for the cationic rhodium(I)/H₈-BINAP complex-catalyzed chemo- and regioselective cross-[2+2+2] cycloaddition with two terminal monoynes **4** leading to the corresponding 3,6-disubstituted phthalate **6** (Scheme 5).¹⁶ The mechanistic study indicated that this reaction proceeds through the chemo- and regioselective formation of rhodacyclopentadiene intermediate **D**.^{16b}

Scheme 5. Cationic rhodium(1)/H₈-BINAP complex-catalyzed cross-[2+2+2] cycloaddition of two terminal monoynes 4 with one dialkyl acetylenedicarboxylate 5.^{16b}

Therefore the reactions of diynes **1** with monoyne **2d** might proceed through not only intermediate **A** but also intermediate **B**. Indeed, the use of H₈-BINAP as a ligand furnished phthalate **3ad** in low yield along with a large amount of oligomers derived from **1a** and **2d** presumably through the predominant formation of intermediate **C** (Table 5, entry 7). On the other hand, the rho-dium-catalyzed reaction of 1-dodecyne (**4a**) with diethyl acetylenedicarboxylate (**5a**) by using BINAP as a ligand furnishes 4,5-disubstituted phthalate **8a** in significantly higher yield than that using H₈-BINAP as a ligand (Scheme 6).^{16b} In accordance with this previous observation, the use of BINAP significantly increased the yield of 4,5-disubstituted phthalate **3ad** presumably due to increased formation of intermediate **B** (Table 5, entry 8).

3. Conclusions

In conclusion, convenient as well as convergent synthesis of functionalized tetrahydronaphthalenes has been accomplished under mild reaction conditions by the cationic rhodium(I)/H₈-BINAP complex-catalyzed [2+2+2] cycloaddition of 1,7-octadiyne derivatives with functionalized monoynes. Among the bisphosphine ligands examined, H₈-BINAP was the best ligand, which is consistent with our previously reported cationic rhodium(I) complex-catalyzed [2+2+2] cycloadditions of alkynes.^{16,17} As the previously

Table 5

Rhodium-catalyzed [2+2+2] cycloadditions of 1,6-heptadiyne (1e), 1,7-octadiyne (1a), and 1,8-nonadiyne (1f) with monoynes 2^a

Entry	1	2	\mathbb{R}^1	R ²	2 (equiv)	3	Yield (%) ^b
1 ^c	1e	2e	Me	CH ₂ OH	1.1	3ee	79
2 ^{c,d}	1a	2e	Me	CH ₂ OH	1.1	3ae	80
3 ^e	1f	2e	Me	CH ₂ OH	2.0	3fe	39
4 ^c	1e	2a	Me	CO ₂ Et	1.1	3ea	91
5 ^{c,d}	1a	2a	Me	CO ₂ Et	1.1	3aa	77
6 ^e	1f	2a	Me	CO ₂ Et	2.0	3fa	45
7	1a	2d	CO ₂ Me	CO ₂ Me	2.0	3ad	11
8 ^{d,f}	1a	2d	CO ₂ Me	CO ₂ Me	2.0	3ad	53
9 ^f	1e	2d	CO ₂ Me	CO ₂ Me	2.0	3ed	29 ^g
10 ^f	1f	2d	CO ₂ Me	CO ₂ Me	2.0	3fd	h

 a A (CH_2Cl)_2 solution of 1 and 2 was added dropwise over 10 min to a (CH_2Cl)_2 solution of Rh catalyst.

^b Isolated vield.

^c A (CH₂Cl)₂ solution of **1** was added dropwise over 10 min to a (CH₂Cl)₂ solution of **2** and Rh catalyst.

^d Concentration of **1**:0.1 M.

^e At 40 °C.

^f Ligand: BINAP.

^g Determined by ¹H NMR using 1,4-dimethoxybenzene as an internal standard.

 $^{\rm h}\,$ A trace amount of 3fd was generated, while that could not be isolated in a pure form.

Scheme 6. Effect of ligands on regioselectivity of cross-[2+2+2] cycloaddition of monoynes 4 with one dialkyl acetylenedicarboxylate (5).^{16b}

reported nickel-catalyzed reactions are limited to the use of electron-deficient 1,7-octadiyne derivatives at elevated temperature^{11a} or under microwave heating,^{11b} allowing use of both electron-rich and electron-deficient 1,7-octadiyne derivatives under mild reaction conditions in the present cationic rhodium(I)/H₈-BINAP complex-catalyzed reactions is advantageous than the nickel catalyses. Furthermore, a variety of electron-rich and deficient monoynes can also be employed as a cycloaddition partner, although some limitations exist. Both diynes and monoynes can be obtained from commercial sources or prepared in one-step from commercially available reagents, and thus this method enables a convenient synthesis of new functionalized tetrahydronaphthalenes. The effect of the divne tether lengths on the reactivity was investigated, which revealed that 1,6-heptadiyne and 1,7-octadiyne exhibited higher reactivity than 1,8-nonadiyne. A mechanism of the rhodium-catalyzed [2+2+2] cycloaddition is proposed that the reactions proceeds through the rhodacyclopentadiene generated by oxidative coupling of a diyne with rhodium. In the reactions of diynes and dimethyl acetylenedicarboxylate, the rhodacyclopentadiene generated by oxidative coupling of a diyne and a monoyne with rhodium would also be involved.

4.1. General

¹H NMR spectra were recorded on 300 MHz (JEOL AL 300). ¹³C NMR spectra were obtained with complete proton decoupling on 75 MHz (JEOL AL 300). Infrared spectra were obtained on a JASCO FT/IR-4100. HRMS data were obtained on a Bruker micrOTOF Focus II. All reactions were carried out under an atmosphere of argon in oven-dried glassware with magnetic stirring.

4.2. Materials

Anhydrous (CH₂Cl)₂ (No. 28450-5) and THF (No. 18656-2) were obtained from Aldrich and used as received. 1,7-Diyne **1d** was prepared according to the literature.²¹ All other reagents were obtained from commercial sources and used as received.

4.3. Representative procedures for the rhodium-catalyzed [2+2+2] cycloadditions of diynes 1 with monoynes 2

Method A: Table 2, entry 1. H₈-BINAP (9.5 mg, 0.015 mmol) and $[Rh(cod)_2]BF_4$ (6.1 mg, 0.015 mmol) were dissolved in CH₂Cl₂ (3.0 mL), and the reaction mixture was stirred at room temperature for 5 min. H₂ was introduced to the resulting solution in a Schlenk tube. After stirring at room temperature for 1 h, the resulting solution was concentrated to dryness and the residue was redissolved in (CH₂Cl)₂ (0.5 mL) and a (CH₂Cl)₂ (0.5 mL) solution of **2a** (37.0 mg, 0.330 mmol) was added. A (CH₂Cl)₂ (2.0 mL) solution of **1a** (31.8 mg, 0.300 mmol) was added dropwise to this solution over 10 min at room temperature (concentration of **1a**: 0.1 M). The reaction mixture was stirred at room temperature for 16 h. The resulting solution was concentrated and purified by a preparative TLC (*n*-hexane/ethyl acetate=20:1), which furnished **3aa** (50.4 mg, 0.231 mmol, 77% yield) as a colorless oil.

Method B: Table 2, entry 3. H_8 -BINAP (9.5 mg, 0.015 mmol) and [Rh(cod)₂]BF₄ (6.1 mg, 0.015 mmol) were dissolved in CH₂Cl₂ (3.0 mL), and the reaction mixture was stirred at room temperature for 5 min. H_2 was introduced to the resulting solution in a Schlenk tube. After stirring at room temperature for 1 h, the resulting solution was concentrated to dryness and the residue was redissolved in (CH₂Cl)₂ (1.0 mL). To this solution was added a (CH₂Cl)₂ (2.0 mL) solution of **1a** (31.8 mg, 0.300 mmol) and **2c** (75.7 mg, 0.600 mmol) at room temperature (concentration of **1a**: 0.1 M). The reaction mixture was stirred at room temperature for 16 h. The resulting solution was concentrated and purified by a preparative TLC (*n*-hexane/ethyl acetate=20:1), which furnished **3ac** (35.9 mg, 0.155 mmol, 52% yield) as a colorless oil.

4.3.1. 3-Methyl-5,6,7,8-tetrahydronaphthalene-2-carboxylic acid ethyl ester (**3aa**). Method A; colorless oil; IR (neat) 2931, 1715, 1447, 1264, 1141, 1056 cm⁻¹; ¹H NMR (CDCl₃) δ 7.64 (s, 1H), 6.93 (s, 1H), 4.33 (q, *J*=7.2 Hz, 2H), 2.85–2.64 (m, 4H), 2.52 (s, 3H), 1.81–1.76 (m, 4H), 1.38 (t, *J*=7.2 Hz, 3H); ¹³C NMR (CDCl₃) δ 167.7, 141.5, 136.7, 134.4, 132.2, 131.3, 126.9, 60.3, 29.2, 28.7, 23.1, 22.9, 21.2, 14.3; HRMS (ESI) calcd for C₁₄H₁₈O₂Na [M+Na]⁺ 241.1199, found 241.1225.

4.3.2. 3-Phenyl-5,6,7,8-tetrahydronaphthalene-2-carboxylic acid ethyl ester (**3ab**)²⁸. Method A (concentration of **1a**: 0.05 M); pale yellow oil; ¹H NMR (CDCl₃) δ 7.57 (s, 1H), 7.43–7.20 (m, 5H), 7.05 (s, 1H), 4.05 (q, *J*=7.2 Hz, 2H), 2.90–2.72 (m, 4H), 1.85–1.81 (m, 4H), 0.97 (t, *J*=7.2 Hz, 3H); ¹³C NMR (CDCl₃) δ 168.8, 141.8, 140.8, 139.7, 136.3, 131.3, 130.6, 128.4, 128.2, 127.8, 126.7, 60.6, 29.4, 28.9, 23.0, 22.9, 13.6.

4.3.3. 5,6,7,8-Tetrahydronaphthalene-2-carboxylic acid tert-butyl ester (**3ac**)^{29,30}. Method B; colorless oil; ¹H NMR (CDCl₃) δ 7.75–

7.65 (m, 2H), 7.14–7.04 (m, 1H), 2.87–2.69 (m, 4H), 1.83–1.78 (m, 4H), 1.59 (s, 9H); $^{13}\mathrm{C}$ NMR (CDCl₃) δ 166.1, 142.2, 137.0, 130.2, 129.1, 128.9, 126.3, 80.5, 29.5, 29.3, 28.2, 23.0, 22.9.

4.3.4. 5,6,7,8-Tetrahydronaphthalene-2,3-dicarboxylic acid dimethyl ester (**3ad**)^{30,31}. Method B (ligand: BINAP); colorless oil; ¹H NMR (CDCl₃) δ 7.42 (s, 2H), 3.88 (s, 6H), 2.87–2.70 (m, 4H), 1.82–1.78 (m, 4H); ¹³C NMR (CDCl₃) δ 168.3, 140.8, 129.7, 128.9, 52.4, 29.2, 22.6.

4.3.5. (3-Methyl-5,6,7,8-tetrahydronaphthalen-2-yl)methanol (**3ae**). Method A; colorless solid; mp 66.6–67.9 °C; IR (KBr) 3306, 2914, 1435, 1006 cm⁻¹; ¹H NMR (CDCl₃) δ 7.04 (s, 1H), 6.90 (s, 1H), 4.64 (s, 2H), 2.81–2.63 (m, 4H), 2.31 (s, 3H), 1.81–1.77 (m, 4H), 1.51 (s, 1H); ¹³C NMR (CDCl₃) δ 136.6, 135.9, 134.6, 133.1, 131.0, 128.6, 63.4, 29.0, 28.9, 23.3, 23.2, 18.1; HRMS (ESI) calcd for C₁₂H₁₆ONa [M+Na]⁺ 199.1093, found 199.1089.

4.3.6. (3-Phenyl-5,6,7,8-tetrahydronaphthalen-2-yl)methanol (**3af**). Method A; pale yellow solid; Mp 61.4–62.5 °C; IR (KBr) 3277, 2932, 1442, 1036, 703 cm⁻¹; ¹H NMR (CDCl₃) δ 7.45–7.26 (m, 5H), 7.22 (s,1H), 7.00 (s,1H), 4.54 (s,2H), 2.92–2.66 (m, 4H), 1.93–1.69 (m, 4H), 1.78–1.56 (m,1H); ¹³C NMR (CDCl₃) δ 140.8, 138.7, 136.70, 136.67, 135.2, 130.8, 129.3, 129.2, 128.2, 127.0, 63.1, 29.09, 29.07, 23.2; HRMS (ESI) calcd for C₁₇H₁₈ONa [M+Na]⁺ 261.1250, found 261.1259.

4.3.7. (5,6,7,8-Tetrahydronaphthalen-2-yl)methanol (**3ag**)³¹. Method B; pale yellow oil; ¹H NMR (CDCl₃) δ 7.14–7.01 (m, 3H), 4.62 (d, *J*=4.2 Hz, 2H), 2.87–2.66 (m, 4H), 1.82–1.78 (m, 4H), 1.67–1.55 (m, 1H); ¹³C NMR (CDCl₃) δ 138.0, 137.3, 136.6, 129.3, 127.8, 124.3, 65.2, 29.3, 29.1, 23.2, 23.1.

4.3.8. (3-Hydroxymethyl-5,6,7,8-tetrahydronaphthalen-2-yl)methanol (**3ah**). Method A (solvent: THF); colorless solid; mp 105.0–106.3 °C; IR (KBr) 3420, 2922, 1087, 1001 cm⁻¹; ¹H NMR (CDCl₃) δ 7.06 (s, 2H), 4.68 (s, 4H), 2.85–2.64 (m, 4H), 1.81–1.77 (m, 4H), 1.59 (s, 2H); ¹³C NMR (CDCl₃) δ 137.3, 136.4, 130.6, 63.9, 29.0, 23.0; HRMS (ESI) calcd for C₁₂H₁₆O₂Na [M+Na]⁺ 215.1043, found 215.1073.

4.3.9. 1,3,4-Trimethyl-5,6,7,8-tetrahydronaphthalene-2-carboxylic acid ethyl ester (**3ba**). Method A; colorless solid; mp 70.8–71.6 °C; IR (KBr) 2926, 1725, 1433, 1267, 1190 cm⁻¹; ¹H NMR (CDCl₃) δ 4.40 (q, J=7.2 Hz, 2H), 2.74–2.52 (m, 4H), 2.20 (s, 3H), 2.13 (s, 6H), 1.80–1.76 (m, 4H), 1.39 (t, J=7.2 Hz, 3H); ¹³C NMR (CDCl₃) δ 171.3, 136.5, 133.4, 132.9, 132.7, 129.1, 128.6, 60.7, 28.1, 27.4, 22.9, 22.7, 17.1, 16.1, 14.7, 14.2; HRMS (ESI) calcd for C₁₆H₂₂O₂Na [M+Na]⁺ 269.1512, found 269.1505.

4.3.10. 1,4-Dimethyl-3-phenyl-5,6,7,8-tetrahydronaphthalene-2-carboxylic acid ethyl ester (**3bb**). Method A; colorless solid; mp 72.9–74.5 °C; IR (KBr) 2930, 1725, 1286, 1187, 702 cm⁻¹; ¹H NMR (CDCl₃) δ 7.42–7.11 (m, 5H), 3.89 (q, *J*=7.2 Hz, 2H), 2.76–2.55 (m, 4H), 2.19 (s, 3H), 1.94 (s, 3H), 1.84–1.80 (m, 4H), 0.88 (t, *J*=7.2 Hz, 3H); ¹³C NMR (CDCl₃) δ 170.2, 140.1, 137.1, 136.0, 135.2, 132.6, 132.1, 129.8, 129.4, 127.7, 126.8, 60.4, 28.1, 27.5, 22.8, 22.7, 16.3, 16.1, 13.6; HRMS (ESI) calcd for C₂₁H₂₄O₂Na [M+Na]⁺ 331.1660, found 331.1512.

4.3.11. 1,4-Dimethyl-5,6,7,8-tetrahydronaphthalene-2,3-dicarboxylic acid dimethyl ester (**3bd**). Method B (ligand: BINAP, temperature: 80 °C); colorless solid; mp 63.6–64.9 °C; IR (KBr) 2929, 1725, 1438, 1265, 1213, 1031 cm⁻¹; ¹H NMR (CDCl₃) δ 3.85 (s, 6H), 2.73–2.53 (m, 4H), 2.21 (s, 6H), 1.88–1.67 (m, 4H); ¹³C NMR (CDCl₃) δ 169.6, 138.7, 132.2, 129.4, 52.2, 27.8, 22.5, 16.1; HRMS (ESI) calcd for C₁₆H₂₀O₄Na [M+Na]⁺ 299.1254, found 299.1254.

4.3.12. (1,3,4-Trimethyl-5,6,7,8-tetrahydronaphthalen-2-yl)methanol (**3be**). Method A (temperature: 80 °C); colorless solid; mp 101.5–

102.8 °C; IR (KBr) 3335, 2924, 1432, 988 cm⁻¹; ¹H NMR (CDCl₃) δ 4.80 (s, 2H), 2.78–2.53 (m, 4H), 2.37 (s, 3H), 2.30 (s, 3H), 2.18 (s, 3H), 1.89–1.66 (m, 4H), 1.25 (s, 1H); ¹³C NMR (CDCl₃) δ 135.8, 133.9, 133.6, 133.1, 132.9, 132.7, 59.9, 28.4, 28.1, 23.1, 15.9, 15.3, 14.8; HRMS (ESI) calcd for C₁₄H₂₀ONa [M+Na]⁺ 227.1406, found 227.1408.

4.3.13. (1,4-Dimethyl-3-phenyl-5,6,7,8-tetrahydronaphthalen-2-yl)methanol (**3bf**). Method A (temperature: 50 °C); pale yellow solid; mp 68.0–69.5 °C; IR (KBr) 3313, 2925, 1429, 984, 702 cm⁻¹; ¹H NMR (CDCl₃) δ 7.50–7.32 (m, 3H), 7.22–7.14 (m, 2H), 4.40 (s, 2H), 2.85– 2.60 (m, 4H), 2.37 (s, 3H), 1.88 (s, 3H), 1.95–1.76 (m, 4H), 1.22 (s, 1H); ¹³C NMR (CDCl₃) δ 141.4, 139.8, 135.8, 135.6, 133.7, 133.4, 132.1, 129.4, 128.2, 126.7, 60.6, 28.2, 28.1, 23.0, 22.9, 16.8, 14.8; HRMS (ESI) calcd for C₁₉H₂₂O [M+H]⁺ 289.1563, found 289.1572.

4.3.14. (1,4-Dimethyl-5,6,7,8-tetrahydronaphthalen-2-yl)methanol (**3bg**). Method B (temperature: 50 °C); colorless solid; mp 75.9–77.4 °C; IR (KBr) 3379, 2925, 1442, 1031, 876 cm⁻¹; ¹H NMR (CDCl₃) δ 7.00 (s, 1H), 4.67 (s, 2H), 2.76–2.54 (m, 4H), 2.22 (s, 6H), 1.83–1.78 (m, 4H), 1.46 (s, 1H); ¹³C NMR (CDCl₃) δ 136.2, 135.6, 135.4, 133.8, 132.4, 127.2, 64.3, 27.7, 27.4, 23.1, 22.7, 19.3, 14.0; HRMS (ESI) calcd for C₁₃H₁₈ONa [M+Na]⁺ 213.1250, found 213.1260.

4.3.15. 1,4-Diethyl-3-methyl-5,6,7,8-tetrahydronaphthalene-2-carboxylic acid ethyl ester (**3ca**). Method A; colorless oil; IR (neat) 2933, 1725, 1451, 1259, 1181, 1056 cm⁻¹; ¹H NMR (CDCl₃) δ 4.40 (q, *J*=7.2 Hz, 2H), 2.84–2.65 (m, 4H), 2.64 (q, *J*=7.5 Hz, 2H), 2.54 (q, *J*=7.5 Hz, 2H), 2.23 (s, 3H), 1.81–1.76 (m, 4H), 1.39 (t, *J*=7.2 Hz, 3H), 1.61 (t, *J*=7.5 Hz, 3H), 1.10 (t, *J*=7.5 Hz, 3H); ¹³C NMR (CDCl₃) δ 171.4, 138.7, 136.3, 135.3, 133.12, 133.05, 128.4, 60.7, 27.0, 26.3, 23.7, 23.1, 22.8, 21.8, 16.1, 14.6, 14.2, 13.2; HRMS (ESI) calcd for C₁₈H₂₆O₂Na [M+Na]⁺ 297.1825, found 297.1843.

4.3.16. 3-*Methyl*-5,6,7,8-*tetrahydronaphthalene*-1,2,4-*tricarboxylic acid* 2-*ethyl ester* 1,4-*dimethyl ester* (**3da**). Method A (concentration of **1d**: 0.05 M); colorless solid; mp 55.4–57.0 °C; IR (KBr) 2944, 1727, 1439, 1231, 1066 cm⁻¹; ¹H NMR (CDCl₃) δ 4.30 (q, *J*=7.2 Hz, 2H), 3.90 (s, 3H), 3.84 (s, 3H), 2.85–2.65 (m, 2H), 2.75–2.60 (m, 2H), 2.27 (s, 3H), 1.77–1.73 (m, 4H), 1.33 (t, *J*=7.2 Hz, 3H); ¹³C NMR (CDCl₃) δ 169.6, 168.5, 167.6, 137.2, 136.5, 133.4, 133.3, 130.2, 129.7, 61.5, 52.21, 52.19, 27.2, 26.9, 22.2, 21.9, 17.0, 14.0; HRMS (ESI) calcd for C₁₈H₂₂O₆Na [M+Na]⁺ 357.1309, found 357.1312.

4.3.17. 3-Phenyl-5,6,7,8-tetrahydronaphthalene-1,2,4-tricarboxylic acid 2-ethyl ester 1,4-dimethyl ester (**3db**). Method A (concentration of **1d**: 0.05 M); colorless solid; mp 85.0–86.8 °C; IR (KBr) 2929, 1728, 1434, 1208, 1020, 708 cm⁻¹; ¹H NMR (CDCl₃) δ 7.37–7.26 (m, 3H), 7.26–7.16 (m, 2H), 3.90 (q, *J*=7.2 Hz, 2H), 3.86 (s, 3H), 3.46 (s, 3H), 2.91–2.77 (m, 2H), 2.83–2.68 (m, 2H), 1.83–1.78 (m, 4H), 0.85 (t, *J*=7.2 Hz, 3H); ¹³C NMR (CDCl₃) δ 168.7, 168.4, 167.5, 137.8, 136.62, 136.56, 135.6, 134.9, 133.4, 130.0, 128.8, 127.7, 127.6, 61.2, 52.4, 51.8, 27.3, 27.1, 22.1, 21.9, 13.4; HRMS (ESI) calcd for C₂₃H₂₄O₆Na [M+Na]⁺ 419.1465, found 419.1465.

4.3.18. 5,6,7,8-Tetrahydronaphthalene-1,2,3,4-tetracarboxylic acid tetramethyl ester (**3dd**)³². Method B (ligand: BINAP); colorless solid; mp 147.8–149.3 °C; ¹H NMR (CDCl₃) δ 3.88 (s, 6H), 3.83 (s, 6H), 2.88–2.70 (m, 4H), 1.80–1.76 (m, 4H); ¹³C NMR (CDCl₃) δ 167.7, 166.6, 138.8, 134.7, 128.3, 52.9, 52.6, 27.5, 21.7.

4.3.19. 4-Methyl-1-oxo-1,3,6,7,8,9-hexahydronaphtho[1,2-c]furan-5carboxylic acid methyl ester (**4de**). Method A; colorless solid; mp >280.0 °C; IR (KBr) 2952, 1761, 1722, 1213, 1016 cm⁻¹; ¹H NMR (CDCl₃) δ 5.16 (s, 2H), 3.95 (s, 3H), 3.28–3.12 (m, 2H), 2.80–2.63 (m, 2H), 2.19 (s, 3H), 1.83–1.79 (m, 4H); ¹³C NMR (CDCl₃) δ 171.1, 169.4, 144.0, 139.3, 136.8, 135.2, 125.5, 123.1, 68.1, 52.3, 26.9, 24.8, 22.2, 21.6, 14.7; HRMS (ESI) calcd for $C_{15}H_{16}O_4Na \ [M+Na]^+$ 283.0941, found 283.0944.

4.3.20. 1-Oxo-4-phenyl-1,3,6,7,8,9-hexahydronaphtho[1,2-c]furan-5carboxylic acid methyl ester (**4df**). Method A (temperature: 40 °C); colorless solid; mp 129.1–131.0 °C; IR (KBr) 2949, 1753, 1452, 1205, 1111, 700 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 7.50–7.33 (m, 3H), 7.20–7.34 (m, 2H), 5.07 (s, 2H), 3.58 (s, 3H), 3.42–3.18 (m, 2H), 2.92– 2.69 (m, 2H), 2.10–1.72 (m, 4H); ¹³C NMR (CDCl₃, 75 MHz) δ 170.8, 168.8, 143.5, 138.8, 138.6, 135.7, 131.4, 128.8, 128.4, 128.1, 123.5, 68.3, 52.1, 27.0, 25.1, 22.2, 21.5; HRMS (ESI) calcd for C₂₀H₁₈O₄Na [M+Na]⁺ 345.1097, found 345.1101.

4.3.21. 1-Oxo-1,3,6,7,8,9-hexahydronaphtho[1,2-c]furan-5-carboxylic acid methyl ester (**4dg**)^{10b}. Method B; colorless solid; mp 129.4–130.9 °C; ¹H NMR (CDCl₃) δ 7.60 (s, 1H), 5.20 (s, 2H), 3.89 (s, 3H), 3.30–3.13 (m, 2H), 3.07–2.89 (m, 2H), 1.80–1.76 (m, 4H); ¹³C NMR (CDCl₃) δ 170.5, 167.9, 143.9, 140.2, 138.9, 136.2, 125.0, 120.2, 68.4, 52.4, 27.8, 25.5, 22.3, 21.3.

4.3.22. 2-(5,6,7,8-Tetrahydronaphthalen-2-ylmethyl)isoindole-1,3dione (**3ai**). Method B; colorless solid; mp 121.6–122.4 °C; IR (neat) 2935, 1713, 1391, 951, 713 cm⁻¹; ¹H NMR (CDCl₃) δ 7.90–7.75 (m, 2H), 7.77–7.62 (m, 2H), 7.22–7.08 (m, 2H), 7.00 (d, *J*=7.8 Hz, 1H), 4.77 (s, 2H), 2.84–2.61 (m, 4H), 1.85–1.66 (m, 4H); ¹³C NMR (CDCl₃) δ 168.0, 137.4, 136.8, 133.8, 133.4, 132.1, 129.34, 129.29, 125.8, 123.2, 41.3, 29.3, 29.1, 23.1, 23.0; HRMS (ESI) calcd for C₁₉H₁₇NO₂Na [M+Na]⁺ 314.1151, found 314.1172.

4.3.23. 2-(1,4-Dimethyl-5,6,7,8-tetrahydronaphthalen-2-ylmethyl)isoindole-1,3-dione (**3bi**). Method B; colorless solid; mp 153.8– 155.6 °C; IR (KBr) 2924, 1712, 1391, 1109, 952, 714 cm⁻¹; ¹H NMR (CDCl₃) δ 7.92–7.79 (m, 2H), 7.78–7.65 (m, 2H), 7.00 (s, 1H), 4.87 (s, 2H), 2.73–2.51 (m, 4H), 2.31 (s, 3H), 2.15 (s, 3H), 1.85–1.79 (m, 4H); ¹³C NMR (CDCl₃) δ 168.3, 136.0, 135.4, 133.9, 133.8, 132.2, 132.0, 130.7, 127.4, 123.3, 39.8, 27.9, 27.3, 23.1, 22.6, 19.5, 14.4; HRMS (ESI) calcd for C₂₁H₂₁NO₂Na [M+Na]⁺ 342.1465, found 342.1450.

4.3.24. 2-(1,3-Dioxo-1,3-dihydroisoindol-2-ylmethyl)-5,6,7,8tetrahydronaphthalene-1,4-dicarboxylic acid dimethyl ester (**3di**)^{10b}. Method B; colorless solid; mp 162.3–164.1 °C; ¹H NMR (CDCl₃) δ 7.92–7.74 (m, 2H), 7.78–7.60 (m, 2H), 7.77 (s, 1H), 4.84 (s, 2H), 3.96 (s, 3H), 3.85 (s, 3H), 3.14–2.85 (m, 2H), 2.85–2.55 (m, 2H), 1.85–1.59 (m, 4H); ¹³C NMR (CDCl₃) δ 169.0, 167.74, 167.69, 138.7, 136.8, 135.5, 134.0, 131.9, 131.6, 129.7, 129.1, 123.3, 52.5, 52.0, 39.0, 27.8, 27.5, 22.2, 22.0.

4.3.25. (6-*Methylindan-5-yl*)-*methanol* (**3ee**). Method A (concentration of **1e**: 0.05 M); colorless solid; mp 65.9–67.0 °C; IR (KBr) 3348, 2913, 2841, 1454, 1063 cm⁻¹; ¹H NMR (CDCl₃) δ 7.22 (s, 1H), 7.08 (s, 1H), 4.66 (s, 2H), 2.89 (t, *J*=7.5 Hz, 4H), 2.12 (s, 3H), 2.07 (quint, *J*=7.5 Hz, 2H), 1.61 (s, 1H); ¹³C NMR (CDCl₃) δ 144.0, 141.9, 136.5, 133.9, 126.3, 123.9, 63.7, 32.6, 32.4, 25.5, 18.6; HRMS (ESI) calcd for C₁₁H₁₄ONa [M+Na]⁺ 185.0937, found 185.0948.

4.3.26. (3-Methyl-6,7,8,9-tetrahydro-5H-benzocyclohepten-2-yl)methanol (**3fe**). Method A (temperature: 40 °C, concentration of **1f**: 0.05 M); colorless solid; mp 107.0–108.8 °C; IR (KBr) 3330, 2909, 1442, 1075, 1033 cm⁻¹; ¹H NMR (CDCl₃) δ 7.08 (s, 1H), 6.94 (s, 1H), 4.64 (s, 2H), 2.85–2.69 (m, 4H), 2.31 (s, 3H), 1.92–1.75 (m, 2H), 1.74–1.50 (m, 5H); ¹³C NMR (CDCl₃) δ 143.0, 141.0, 135.9, 133.4, 131.3, 128.8, 63.3, 36.24, 36.18, 32.7, 28.44, 28.35, 18.0; HRMS (ESI) calcd for C₁₃H₁₈ONa [M+Na]⁺ 213.1250, found 213.1258.

4.3.27. 6-*Methylindan-5-carboxylic ethyl ester* (**3ea**). Method A; colorless oil; IR (neat) 2956, 2360, 1716, 1251, 1112 cm⁻¹; ¹H NMR

(CDCl₃) δ 7.78 (s, 1H), 7.10 (s, 1H), 4.34 (q, *J*=7.2 Hz, 2H), 2.90 (t, *J*=7.5 Hz, 4H), 2.57 (s, 3H), 2.08 (quint, *J*=7.5 Hz, 2H), 1.39 (t, *J*=7.2 Hz, 3H); ¹³C NMR (CDCl₃) δ 168.0, 148.8, 141.6, 138.1, 127.7, 127.5, 126.2, 60.4, 32.8, 32.2, 25.4, 21.7, 14.3; HRMS (ESI) calcd for C₁₃H₁₆O₂Na [M+Na]⁺ 227.1043, found 227.1048.

4.3.28. 3-*Methyl*-6,7,8,9-*tetrahydro*-5*H*-*benzocycloheptene*-2-*carboxylic acid ethyl ester* (**3fa**). Method B (temperature: 40 °C, concentration of **1f**: 0.05 M); colorless oil; IR (neat) 2924, 1716, 1448, 1269, 1050 cm⁻¹; ¹H NMR (CDCl₃) δ 7.66 (s, 1H), 6.97 (s, 1H), 4.33 (q, *J*=7.2 Hz, 2H), 2.79 (t, *J*=5.4 Hz, 2H), 2.77 (t, *J*=5.4 Hz, 2H), 2.53 (s, 3H), 1.90–1.75 (m, 2H), 1.71–1.52 (m, 4H), 1.38 (t, *J*=7.2 Hz, 3H); ¹³C NMR (CDCl₃) δ 167.8, 147.8, 140.7, 137.8, 132.6, 131.0, 127.0, 60.4, 36.5, 36.0, 32.6, 28.3, 28.1, 21.2, 14.4; HRMS (ESI) calcd for C₁₅H₂₀O₂Na [M+Na]⁺ 255.1356, found 255.1382.

4.3.29. Indan-5,8-dicarboxylic acid dimethyl ester (**3ed**)³³. Method B (concentration of **1e**: 0.05 M, ligand: BINAP); ¹H NMR (CDCl₃) δ 7.55 (s, 2H), 3.88 (s, 6H), 2.94 (t, *J*=7.5 Hz, 4H), 2.12 (quint, *J*=7.5 Hz, 2H); ¹³C NMR (CDCl₃) δ 168.6, 147.9, 130.2, 124.8, 52.5, 32.7, 25.2.

Acknowledgements

This work was supported partly by a Grant-in-Aid for Scientific Research (No. 20675002) from MEXT, Japan. We are grateful to Takasago International Corporation for the gift of Segphos and H₈-BINAP, and Umicore for generous support in supplying rhodium complexes.

References and notes

- For examples, see: (a) Cimetiere, B.; Dubuffet, T.; Landras, C.; Descombes, J.-J.; Simonet, S.; Verbeuren, T. J.; Lavielle, G. *Bioorg. Med. Chem. Lett.* **1998**, 8, 1381; (b) Dumas, M.; Dumas, J. P.; Bardou, M.; Rochette, L.; Advenier, C.; Giudicelli, J. F. *Eur. J. Pharmacol.* **1998**, *348*, 223; (c) Stutz, A.; Georgopoulos, A.; Granitzer, W.; Petranyi, G.; Berney, D. J. *Med. Chem.* **1986**, *29*, 112; (d) Beaumont, D.; Waigh, R. D. *Prog. Med. Chem.* **1981**, *18*, 45.
- 2. For an example, see: Amer, I.; Amer, H.; Blum, J. J. Mol. Catal. 1986, 34, 221.
- For an example, see: Kurteva, V. B.; Santos, A. G.; Afonso, C. A. M. Org. Biomol. Chem. 2004, 2, 514.
- For recent reviews of transition-metal-catalyzed [2+2+2] cycloadditions, see:

 (a) Galan, B. R.; Rovis, T. Angew. Chem., Int. Ed. 2009, 48, 2830;
 (b) Tanaka, K. Chem. Asian J. 2009, 4, 508;
 (c) Varela, J. A.; Saá, C. Synlett 2008, 2571;
 (d) Shibata, T.; Tsuchikama, K. Org. Biomol. Chem. 2008, 1317;
 (e) Heller, B.; Hapke, M. Chem. Soc. Rev. 2007, 36, 1085;
 (f) Agenet, N.; Buisine, O.; Slowinski, F.; Gandon, V.; Aubert, C.; Malacria, M. In Organic Reactions; RajanBabu, T. V., Ed.; John Wiley: Hoboken, 2007; Vol. 68, p 1;
 (g) Chopade, P. R.; Louie, J. Adv. Synth. Catal. 2006, 348, 2307;
 (h) Gandon, V.; Aubert, C.; Malacria, M. Chem. Commun. 2006, 2209;
 (i) Kotha, S.; Brahmachary, E.; Lahiri, K. Eur. J. Org. Chem. 2005, 4741;
 (j) Gandon, V.; Aubert, C.; Malacria, M. Curr. Org. Chem. 2005, 9, 1699;
 (k) Yamamoto, Y. Curr. Org. Chem. 2005, 9, 503.
- A gold-catalyzed benzannulation leading to tetrahydronaphthalenes was reported; see: Grisé, C. M.; Barriault, L. Org. Lett. 2006, 8, 5905.
- 6. Takai, K.; Yamada, M.; Utimoto, K. Chem. Lett. 1995, 851.
- 7. Hara, R.; Guo, Q.; Takahashi, T. Chem. Lett. 2000, 140.
- 8. Nishikawa, T.; Shinokubo, H.; Oshima, K. Tetrahedron 2003, 59, 9661.
- Gandon, V.; Leca, D.; Aechtner, T.; Vollhardt, K. P. C.; Malacria, M.; Aubert, C. Org. Lett. 2004, 6, 3405.
- (a) Turek, P.; Kotora, M.; Tišlerová, I.; Hocek, M.; Votruba, I.; Císařová, I. J. Org. Chem. 2004, 69, 9224; (b) Bhatarah, P.; Smith, E. H. J. Chem. Soc., Perkin Trans. 1 1992, 2163.
- For [2+2+2] reactions of electron-deficient 1,7-octadiyne derivatives with 1,3diynes at elevated temperature (80 °C), see: (a) Jeevanandam, A.; Korivi, R. P.;

Huang, I.; Cheng, C.-H. Org. Lett. **2002**, *4*, 807 Under microwave heating, see: (b) Teske, J. A.; Deiters, A. J. Org. Chem. **2008**, 73, 342.

- Although a single example of the nickel-catalyzed reaction between 1,7-octadiyne (1a) and a monoyne was reported, the yield was extremely low (13%); see: Turek, P.; Novák, P.; Pohl, R.; Hocek, M.; Kotora, M. J. Org. Chem. 2006, 71, 8978.
- Palladium-catalyzed [2+2+2] cycloadditions of 1,7-octadiyne derivatives and 3,11-tridecadiyne with allylic compounds leading to substituted benzenes were reported; see: Tsukada, N.; Sugawara, S.; Nakaoka, K.; Inoue, Y. J. Org. Chem. 2003, 68, 5961.
- For related discussions, see: (a) Yamamoto, Y.; Arakawa, T.; Ogawa, R.; Itoh, K. J. Am. Chem. Soc. 2003, 125, 12143; (b) Grigg, R.; Scott, R.; Stevenson, P. J. Chem. Soc., Perkin Trans. 1 1988, 1357.
- (a) Beesley, R. M.; Ingold, C. K.; Thorpe, J. F. J. Chem. Soc. 1915, 107, 1080; (b) Jung, M. E.; Gervay, J. J. Am. Chem. Soc. 1991, 113, 224.
- (a) Tanaka, K.; Shirasaka, K. Org. Lett. 2003, 5, 4697; (b) Tanaka, K.; Toyoda, K.; Wada, A.; Shirasaka, K.; Hirano, M. Chem. – Eur. J. 2005, 11, 1145.
- For our accounts, see: (a) Tanaka, K. Synlett 2007, 1977; (b) Tanaka, K.; Nishida, G.; Suda, T. J. Synth. Org. Chem. Jpn. 2007, 65, 862.
- For a review of rhodium-catalyzed cyclotrimerization reactions, see: Fujiwara, M.; Ojima, I. In Modern Rhodium-Catalyzed Organic Reactions; Evans, P. A., Ed.; Wiley-VCH: Weinheim, 2005; p 129.
- 19. Kondoh, A.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2007, 129, 6996.
- (a) Doherty, S.; Knight, J. G.; Smyth, C. H.; Harrington, R. W.; Clegg, W. Org. Lett. 2007, 9, 4925; (b) Doherty, S.; Smyth, C. H.; Harrington, R. W.; Clegg, W. Organometallics 2008, 27, 4837.
- Z-Tetrahydronaphthoyl derivatives are found in various pharmaceutical ingredients.For selected examples see: (a) Ujihara, K.; Ujita, S.; Manabe, A.; Takaishi, M. WO 2,009,075,250 A1, 2009; *Chem. Abstr.* 2009, *151*, 50508; (b) Umemiya, H.; Takahashi, M.; Bohno, M.; Kawabe, K.; Shirokawa, S.; Nagatsuka, T.; Sasako, S.; Satou, R.; Itoh, S.; Shimizu, T. WO 2,009,011,285 A1, 2009; *Chem. Abstr.* 2009, *150*, 168384; (c) Ogino, M.; Nakada, Y.; Shimada, M.; Asano, K.; Tamura, N.; Masago, M. WO 2,006,082,952 A1, 2006; *Chem. Abstr.* 2006, *145*, 230632.
- 2-Tetrahydronaphthalenemethanol derivatives are found in various pharmaceutical ingredients.For selected examples see: (a) Brown, S.P.; Dransfield, P.; Houze, J.B.; Liu, J.; Liu, J.; Ma, Z.; Medina, J.C.; Pattaropong, V.; Schmitt, M.J.; Sharma, R.; Wang, Y. WO 2,008,030,618 A1, 2008; *Chem. Abstr.* 2008, *148*, 355798; (b) Salama, I.; Hocke, C.; Utz, W.; Prante, O.; Boeckler, F.; Huebner, H.; Kuwert, T.; Gmeiner, P. J. Med. Chem. 2007, *50*, 489; (c) Stolle, A.; Antonicek, H.-P.; Lensky, S.; Voerste, A.; Muller, T.; Baumgarten, J.; Von Dem Bruch, K.; Muller, G.; Stropp, U.; Horvath, E.; De Vry, J.-M.-V.; Schreiber, R. WO 2,001,004,107 A1, 2001; *Chem. Abstr.* 2001, *134*, 115845.
- 23. Padwa, A.; Wong, G. S. K. J. Org. Chem. 1986, 51, 3125.
- 24. For examples of the metal-catalyzed sequential [2+2+2] cycloaddition and lactonization, see: (a) Tanaka, K.; Osaka, T.; Noguchi, K.; Hirano, M. Org. Lett. 2007, 9, 1307; (b) Chang, H.-T.; Jeganmohan, M.; Cheng, C.-H. Chem. Commun. 2005, 4955; (c) Takeuchi, R.; Nakaya, Y. Org. Lett. 2003, 5, 3659; (d) Dieck, T. H.; Munz, C.; Müller, C. J. Organomet. Chem. 1990, 384, 243; (e) Abdulla, K.; Booth, B. L.; Stacey, C. J. Organomet. Chem. 1985, 293, 103; (f) Ref. 10b. For synthesis of tetralin lactones by ruthenium-catalyzed [2+2+2] cycloaddition using alky-nylboronates followed by palladium-catalyzed carbonylation, see: (g) Yamamoto, Y.; Ishii, J.-i.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc. 2005, 127, 9625.
- 2-Tetrahydronaphthalenemethylamine derivatives are found in various pharmaceutical ingredients. For selected examples see: (a) Fyfe, M.C.T.; Gattrell, W.; Sambrook-Smith, C.P. WO 2,009,050,523 A1, 2009; *Chem. Abstr.* 2009, *150*, 447956; (b) Beavers, L.S.; Gadski, R.A.; Hipskind, P.A.; Jesudason, C.D.; Lindsley, C.W.; Lobb, K.L.; Pickard, R.T. WO 2,005,082,893 A2, 2005; *Chem. Abstr.* 2005, *143*, 266686; (c) Underwood, D. J.; Green, B. G.; Chabin, R.; Mills, S.; Doherty, J. B.; Finke, P. E.; MacCoss, M.; Shah, S. K.; Burgey, C. S.; Dickinson, T. A.; Griffin, P. R.; Lee, T. E.; Swiderek, K. M.; Covey, T.; Westler, W. M.; Knight, W. B. *Biochemistry* 1995, *34*, 14344.
- For examples using a stoichiometric amount of metal complexes, see:
 (a) Gerardus, B. M.; Kostermans, W. H.; De Wolf, F. B. *Tetrahedron* 1987, 43, 2955;
 (b) Ref. 9.
- For an example using a catalytic amount of a cobalt complex, see: Vitulli, G.; Bertozzi, S.; Lazzaroni, R.; Salvadori, P. J. Mol. Catal. 1988, 45, 155.
- 28. Marvell, E. N.; Hilton, C.; Cleary, M. J. Org. Chem. 1983, 48, 4272.
- 29. von Zezschwitz, P.; Petry, F.; de Meijere, A. Chem.- Eur. J. 2001, 7, 4035.
- von Essen, R.; Frank, D.; Sünnemann, H. W.; Vidovic, D.; Magull, J.; de Meijere, A. Chem.— Eur. J. 2005, 11, 6583.
- 31. Neudeck, H. K. Monatsh. Chem. 1989, 120, 597.
- 32. Maier, G.; Wilmes, R.; Fuchs, H.; Leinweber, M. Chem. Ber. 1993, 126, 1827.
- 33. Cho, C. S.; Patel, D. B.; Shim, S. C. Tetrahedron 2005, 61, 9490.